

Tel.: +36-62 544156 Internet: http://www.geo.u-szeged.hu Email: leeuwen@geo.u-szeged.hu

Evaluation of phenology parameters as proxi for drought measurements

Boudewijn van Leeuwen – Zsuzsanna Ládanyi Department of Physical Geography and Geoinformatics, University of Szeged, Hungary leeuwen@geo.u-szeged.hu, ladanyi@geo.u-szeged.hu

Geostatistics and Machine Learning - Applications in Climate and Environmental Sciences Belgrade, 21-24 June 2016

Research at TFGT

Dep. of Physical Geography and Geoinformatics (TFGT)

- Applied multidisciplinary research
- Geoinformatics
- Remote sensing
- Physically based modeling

Climate change in the Carpathian basin

- Predictions until the end of the century:
 - Stable/slight decrease in the yearly amount of precipitation → more and more during extreme events
 - Severe rise in average yearly temperature

Larger susceptibility to drought

Aims

Relation between climate and periodic biological phenomena

- Estimate phenology and productivity parameters based on medium resolution satellite data
- Develop time series to monitor the process of drought
- Evaluate phenology and productivity parameters as proxi for drought measurements
- Automate the workflow

Deciduous forest

Coniferous forest

MOD13Q1 VI Data

EV

$$NDVI = \frac{\rho_N - \rho_R}{\rho_N + \rho_R}$$

- 250 meter spatial resolution
- 16 day maximum value composites (MVC)
- CV-MVC
- QA data
- 23 images per year, 16 years: 368 Images

$$T = G \frac{\rho_N - \rho_R}{\rho_N + C_1 \rho_R - C_2 \rho_B + L}$$

L = 1, C₁ = 6, C₂ = 7.5, G = 2.5 (Huete et al 1999)

ArcGIS/Python processing tools

- Quality selection
- Pixel subsetting

Workflow

Data preprocessing

- Outliers removal
- Noice reduction

•

- Local polynominal fitting with adaptive Savitzky-Golay filter
- Assumption of seasonality

Raw NDVI and EVI data

Preprocessed data

- Through the years, the shape of the curves is the same
- Very similar curves
- Locust has larger amplitude than pine

Phenological parameters

- a) Season start
- b) Season finish
- c) 80% level
- d) 80% level
- e) Maximum level
- f) Amplitude of the growing season
- g) Length of the growing season
- h) Small seasonal integral indicating productivity
 i) Large seasonal integral indicating productivity

Phenological parameters - calculations

- Own software (Noel Majernyik, SZTE Bolyai Institute)
- Timesat v3.2

Settings for:

- Data quality (to determine the weights)
- Outliers removal (seasonal trend decomposition method)
- Savitsky-Golay fitting method
- Start/end of season method

Deviation of S-integral from the average between 2000 and 2015) for locust (L) and pine (P) forests

- 8 test areas
- Similar patterns
- Higher differences for locust

Pálfai Aridity Index as measurement for drought

$$PAI_{o} = \frac{t_{IV} - v_{III}}{P_{X} - v_{III}} \times 100 \qquad PAI = k_{t} \cdot k_{p} \cdot k_{gw} \cdot PAI_{0}$$

(ATIVIZIG)

 $k_t = \sqrt[6]{\frac{n+1}{n+1}} \quad k_p = \sqrt[4]{\frac{\tau_{\max}}{\overline{\tau}_{\max}}} \quad k_{gw} = \sqrt{\frac{H}{\overline{H}}}$

Month	w _i
X	0.1
XI, XII	0.4
I,II,III,IV	0.5
V	0.8
VI	1.2
VII	1.6
VIII	0.9
IX	0.1

6-8 moderate drought

8-10 moderate to severe drought

10-12 severe drought

12< extremely severe drought

Comparison between the deviation of the s-integral for locust and PAI

- Significant coincidence
- Water scarcity
- Sandy soil
- Lowering of the groundwater table
- Amplitude differences due to ecological characteristics and growth patterns

- 2000, (2003, 2007, 2009,) 2012 and 2013 years with decreased productivity
- Positive deviations in 2002, 2004, 2005, 2006, 2010, 2014, 2015
- Differences in behaviour for locust after drought years in 2000 and 2003

Relationship between vegetation productivity (S-integral) of 4 locust forests and PAI index values

- No clearly quantifiable relationship
- Sometimes impact on following years (2001-2002)

Conclusions and future

- RS data has many opportunities but there is a strong need for development of *filtering methods and methods to generalize* vegetation index datasets
- Data processing was *automated by Python* scripts to improve the processing workflow
- Vegetation productivity parameter and the PAI drought index show a relationship in the study area, but there are *inconsistencies*.
- Future challenges:
 - Study the influence of water shortage and surplus to *different types* of vegetation
 - Relationship between other parameters and drought indices:

Phenology parameters:

- Start of season
- End of season
- Maximum level
- Amplitude of growing season
 - Length of growing season

Machine learning?

Thank you for your attention!

Van Leeuwen Boudewijn

Zsuzsanna Ládanyi

Department of Physical Geography and Geoinformatics University of Szeged